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An expression for the Joule--Thompson coefficient of a polydisperse medium sub- 
ject to throttling is derived in the relaxation approximation of thermodynamics 
of irreversible processes, with both temperature and velocity relaxation in the 
phases taken into account. 

As is well known, a nonzero magnitude of the throttle effect in any gas indicates non- 
ideality of the latter. It is interesting, from this standpoint, to examine the behavior of 
a fine-disperse stream passing through a region of high hydraulic drag. For this purpose, 
we will consider a stream which, after starting from an initial state of equilibrium, passes 
through an adiabatically insulated throttle and terminates in a final state of equilibrium. 
We consider a disperse system in the one-phase approximation, with any interphase interac- 
tion accounted for in the effective characteristics and in the internal degrees of freedom. 

Let the disperse medium constitute a mixture of an ideal gas and solid particles of 
various sizes, without mass transfer between the two phases. Interphase heat and momentum 
transfer can be described with the aid of the relaxation apparatus of thermodynamics of ir- 
reversible processes and, accordingly, by introducing the exchange affinities and the relaxa 
tion parameters characterizing these processes: 

temperature relaxation; 

! 
Aqh = ~ (To -- Th), ~t~ = PkCk (Tk - -  T), 

v e l o c i t y  r e l a x a t i o n ,  

A,h = (w~ - -  w~), ~,h = ~ - -  @ I  - -  w~) �9 

This method has been t ho rough ly  deve loped  in  e a r l i e r  s t u d i e s  [1 -3 ] .  Here i t  w i l l  only  
be p o i n t e d  out  t h a t  a p p l i c a t i o n  of  the  r e l a x a t i o n  method accord ing  to c l a s s i c a l  p rocedure  
[4] to  d i s p e r s e  s y s t e m s [ l ]  has y i e l d e d  the  f o l l o w i n g  e q u a t i o n s  of s t a t e  f o r  a p o l y d i s p e r s e  
mixture: 

thermal, 

and caloric 

N 

p~ --~0 1- -  = ~ l q - ~ a D ]  ~ ~0p,0) , ( 1 )  

6h = (pcp) '~ 6T0 q- p~  2 ' (2) 

where 

N 

h=l Pep l + % k D  J ' (3) 
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N 

po,_p 1-- p l%-'r:hDJ" 
h ~ l  

(4) 

As the thermodynamic parameters have been selected the density p of the mixture, the 
temperature To and the pressure p of the carrier gas, and the specific kinetic energy w~/2 

of the carrier gas. Here p(o), T~O), and p(O) are the stream parameters corresponding to 

the initial equilibrium, D ~ d/dt. 

Assuming that functions p(t), To(t), p(t) can be represented in the form of Fourier 
integrals, we change in Eqs. (i) and (2) to Fourier components: 

9 ~ -- j" 9(t) exp(-- i~t) dt. (5) 

This change is formally effected by replacement of the D operator with its actual value for 

the corresponding harmonic iv. 

The magnitude of the differential adiabatic throttle effect is given by the well-known 

expression 

1 [ T ( 0 0 )  ] (6) 
a h -- 1 + . 

P% L p \ OT ]pJ 

In the nonequilibrium case the stream parameters will, during throttling, continuously 
relax to instantaneous values of corresponding equilibrium parameters in such a way that 
the Joule--Thompson coefficient will also relax to its final value of, obviously, zero. The 
total throttle effect is found by integration of Oh(t) with respect to time from zero to 

infinity, viz., 

I ah (t) dt. (7) 
0 

In the r e l axa t i on  approximation,  on the other  hand, the change to dynamic va r i ab les  is  
e f fec ted  by simple replacement of the de r iva t ives  with t h e i r  dynamic values so tha t  the 
Fourier transform of the Joule-Thompson coefficient can be written as 

a:-- 1 T A ( 0  p i ~ ,pc ) o [ l +  r 

Replacing D with ia~ in expressions (1)-(4.) and calculating the derivative (Op/OTo~ , we 
obtain 

a ~  = - - -  

I--~ Pk[~k ir p0 [1 __ Z ph~Cu ia*x~___ ] 
1 p 1 + ir k 9% 1%- i(OTqk 

@Cp :[1__ Z Ph~h i_~'rf___~k --__ 
h pcz~ 1 + ior%k ] 

The inverse Fourier transform of this expression yields the magnitude of the relaxing 

d i f f e r e n t i a l  t h r o t t l e e f f e c t :  
+| 

1 y e~ exp (io)t) d~, (10) 
~.(t) -- 2~-  
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with the integration performed along the real ~ axis. For the purpose of evaluating this 

integral, we close the real axis through a semicircle in the upper half-plane of complex 
and then let the radius of this semicircle increase to infinity. According to the Jordan 

lemma, this yields 

! 
(t) [ h exp (i~t)], ah (t) = 2--~- d a~ exp (lot) do = i ~ res s ~ ( i i )  

with the summation including only residues at the poles in the upper half-plane of ~. Using 
the principle of the argument [5], one can easily demonstrate that all 2N poles of function 
(9) are located on the imaginary positive semiaxis of complex m and thus within the integra- 
tion contour. 

We now express the poles of function o h as 

iQq~ and iQ/a (12) 

with real positive ~qk and ~fk- On the assumption that all these poles are simple ones, 
i.e., that there are no identical ones among them, the inverse Fourier transform yields 

N 
I 

E [Ah~2q~exp(--Q,~t) + Bl~.O./kexp(--P./kt)] (13) O~h (t ) 
PCr' h=~ 

with real A k and B k obtained by evaluation of the residue at the corresponding poles. 

After having integrated with respect to time over the interval 0~t<eo , we obtain the 
Joule--Thompson coefficient for a disperse stream: 

N 

~ = I ~ , [ A h + B h ] .  (14) PCv 

As an illustrative example, let us consider the behavior of a monodisperse mixture 
(N = i) during adiabatic throttling, with both temperature and velocity relaxation ofthe 
phases. In this case the Fourier transform of the Joule-Thompson coefficient (9) has two 
simple poles at points 

r  i ~q=f  pcr ~2 iQ: i P 
Po~o%o% Po~:: (15) 

respectively. Upon evaluation of the residues at these points on the basis of expressions 
(7) and (ii), easy algebraic transformations yield the Joule-Thompson coefficient 

pc~ pol3oC,o %0 pc,, po130 

for a disperse mixture. 

It is not surprising that the relaxation time does not appear in this expression, since 
the throttle effect calculated here gives the change of stream temperature between two equi- 
librium states, i.e., when all relaxation processes have ceased. Nevertheless, the form of 
expression (16) depends on whether or not some or other relaxation processes do occur. Indeed 
each relaxation process increases the order of the fundamental differential equations by one, 
but, as is well known, there is no continuous transition between solutions to differential 
equations of different orders. With the mechanism of velocity relaxation in a monodisperse 
mixture eliminated (Tf = 0), the throtte effect accordingly becomes 

1 [ Pd~:l ~ ~o(1 c~176 PcP)I 
~f !~:=o pcp Pol3oc~,o %0 0% ' (17) 
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Fig. i. Dependence of the differential 
oo 

throttle effect ~h (deg K/bar) on the 
mass concentration ~ of particles: i) 
corundum; 2) graphite. 

while with the mechanism of temperature relaxation eliminated (Tq = 0) it becomes 

�9 q=0 PCv Po 
(18) 

and with both relaxation mechanisms eliminated (Tf = 0' Yq = 0) 

=~ ~q=0 !--80 h -- (19) 
T/=0 pcp 

According to expressions (17) and (18), a temperature lag causes cooling of the mixture 
and a velocity lag causes heating of the mixture during throttling, The total throttle ef- 
fect depends on the relation between thermal and inertial properties of the mixture com- 
ponents. 

The dependence of ~h on the mass concentration N of particles in the stream has been 
calculated according to expression (16) and is shown in Fig. I. The carrier phase is here 
atmospheric air (p = 760 mm Hg, To = 300~ and the solid phase consists of corundum par- 
ticles (p~ = 3900 kg/m s, ci = 837 J/kg.deg K) or graphite particles (01 = 2150 kg/m 3, c~ = 
772 J/kg.deg K), The volume concentration Bo of the carrier phase has heen calculated as a 
function of the mass concentration ~ of solid particles, viz., as 

[5o= (1-4-~-0~ (20) 

The graph in Fig. 1 indicates that such a disperse stream cools down during throttling, 
with the Joule--Thompson coefficient reaching the absolute magnitude of 10,15 deg K/bar. 

Owing to the smallness of the throttle effect in disperse media, it is difficult to 
name any practical technical application for it. However, it is quite possible that this 
effect plays a definite role in the weather, especially during movement of large dusty or 
snowy air masses across natural barriers. 

NOTATION 

Aqk , Afk , thermal and momentum interphase exchange affinities, respectively; Eqk, 
s relaxation parameters; iT, w, temperature and velocity of a phase relaxation in the 
mixture; p, density of the mixture; To, T k, temperature of the carrier phase and of the 
k-th group of solid particles, respectively; p, pressure of the carrier phase; h, enthalpy 
of the mixture; w~/2, specific kinetic energy of the carrier phase; Bo, Bk, volume concen- 
tration of the carrier phase and of the k-th group of solid particles, respectively; Po, 
Pk, true density of the carrier phase and of the k-th group of solid Particles, respectively; 
Cvo and Cpo, constant-volume and constiant-pressure specific heats of the~mixture, respec- 
tively;Ck, specific heat of the k-th group of solid particles; 0c~, 0Cp, constant~volume 
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and constant-pressure specific heats, respectively, of the mixture referred to volume; Tqk ~ 
Tfk , temperature and velocity relaxation timesp respectively, of the k-th group of solid 
particles; t, times; ~, frequency in the Fourier series expansion; i = /-~; ~h, differential 
Joule--Thompson coefficient (adiabatic throttle effect); N, number of groups of particles in 
the mixture. 
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TEMPERATURE--DENSITY PARAMETERS OF FREON-13 ON THE SATURATION LINE 

A. M. Shavandrin and S. A. Li UDC 533.585.536.66:537.7.717 

Experimental data of a high degree of accuracy are presented on the temperature- 
density parameters of Freon-13 on the saturation line in the density range of 
(0.08246-1.6061).10 kg/m ~ . 

The investigation of the temperature-density parameters of argon [I], Freon-23 [2], 
and Freon-13Bl [3] on the saturation line by the method of quasistatic thermograms has estab- 
lished the possibility of using this method to study the vapor and liquid branches of the 
saturation line in a wide region of temperatures, including those in the vicinity of the 
critical point. Investigations of Freon-13 were made on the same installation to obtain 
more precise data on the saturation line and to test the linear diameter rule and the pos- 
sibility of describing the temperature-density parameters following the hypothesis of scale 
similarity. 

The limiting error of the density data on the saturation line is from 0.03% for p 
1.6 g/cm 3 to 0.07% for the critical density on the liquid branch and from 0.07% for the 
critical density to 0.10% for the lowest densities on the vapor branch. The temperature of 
the phase transition is determined from the scale of the MPTSh-68 with an error of •176 
while its reproducibility is no worse than •176 

The purity if the Freon-13 investigated was 99.99%, so that the sample was not subjected 
to any additional purification. 

The experimentally obtained data on the temperature-density parameters of Freon-13 are 
presented in Tables 1 and 2. 

The values of the critical temperature T c and critical density Pc, which are presented 
in Table 3 in a comparison with data on the critical parameters obtained in the work of 
other authors, were determined by graphic analysis of the tip of the saturation line. 

When a device with one container is used to investigate the temperature-density param- 
eters on the saturation line it is impossible to determine the densities of the liquid and 
vapor at the same temperature; thus, to test the dependence of the average density ~ on the 
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